Natürliches Pflanzengift als neues Breitband-Antibiotikum

06.02.2023 – Forscher*innen der TU Berlin haben in einer internationalen Kooperation den Auslöser der Blattbrandkrankheit beim Zuckerrohr – Albicidin – so verändert, dass er gegen multiresistente Krankenhauskeime wirkt. Albicidin könne möglicherweise eine ganz neue Klasse von Antibiotika begründen.

© Photographee - AdobeStock.com

Multiresistente Krankheitserreger stellen eine gefährliche Belastung für das Gesundheitswesen dar. Infektionen mit resistenten Krankheitserregern sind eine der häufigsten Todesursachen auf Intensivstationen, wobei einige Stämme panresistent werden, also alle gängigen Antibiotika nicht mehr wirken. Über 35.000 Menschen jährlich sterben nach Schätzungen der EU-Gesundheitsbehörde ECDC in Europa aufgrund von Antibiotikaresistenzen. Wissenschaftler*innen suchen daher neue Antibiotika, die auf viele Bakterien wirken und bei denen sich nicht so schnell Resistenzen entwickeln können.

Pflanzengift Albicidin gibt neue Hoffnung

Ein neuer Hoffnungsträger ist das natürliche Pflanzengift Albicidin. Bereits im Jahr 2015 konnte die Arbeitsgruppe der TU um Prof. Dr. Roderich Süssmuth vom Fachgebiet Organische und Biologische Chemie der TU Berlin zusammen mit französischen Wissenschaftler*innen seine chemische Struktur aufklären. Albicidin wird von dem Bakterium Xanthomonas albilineans produziert, das die verheerende Blattbrandkrankheit des Zuckerrohrs verursacht. Der Erreger verwendet dabei Albicidin, um die Pflanze anzugreifen, diese als Wirtsorganismus zu nutzen und sich weiter auszubreiten.

In den letzten Jahren haben Forscher*innen verstanden, wie diese bakterielle Strategie funktioniert: Sie zielt auf ein Enzym namens DNA-Gyrase (oder einfach „Gyrase“) ab. Dieses Enzym dockt an die DNA an und windet diese auf. Das wird immer dann wichtig, wenn die Zelle sich teilen will und dafür die DNA vollständig kopiert werden muss. Gyrase hat jedoch eine Achillesferse: Um ihre Aufgabe zu erfüllen, muss sie die DNA-Doppelhelix kurzzeitig komplett durchschneiden. Dies ist ein gefährlicher Moment für die Zelle, denn es besteht die Gefahr, dass die DNA-Enden nicht wieder korrekt zusammenfinden. Normalerweise fügt Gyrase die beiden DNA-Stücke schnell wieder zusammen, aber Albicidin verhindert dies, was zu einer geschädigten DNA und zum Tod der Zelle führt.

Tödlich auch für Bakterien

Auf diese Weise kann Albicidin nicht nur dem Zuckerrohr-Schädling bei seiner Vernichtungsarbeit helfen. Denn das von ihm attackierte Enzym Gyrase kommt nicht ausschließlich in Pflanzenzellen vor, sondern auch in Bakterien. Beim Menschen wiederum gibt es zwar verwandte Enzyme, die Unterschiede zur Gyrase sind aber hinreichend groß, sodass Albicidin uns mit hoher Wahrscheinlichkeit nichts anhaben kann. Wichtig ist auch, dass sich die Art und Weise, wie Albicidin mit der Gyrase interagiert, ausreichend von bestehenden Antibiotika unterscheidet, sodass Albicidin nach einer chemischen Optimierung wahrscheinlich gegen die meisten der derzeitigen antibiotikaresistenten Bakterien, den sogenannten „Superbugs“, wirksam ist. Das macht den Stoff zu einem der wichtigsten Kandidaten für das herbeigesehnte neue Breitband-Antibiotikum.

Bakterien werden nicht so schnell Resistenzen bilden

„Es scheint, dass Albicidin aufgrund der Art der Wechselwirkung auf einen wirklich wesentlichen Teil des Enzyms abzielt und es für Bakterien schwierig wäre, dagegen eine Resistenz zu entwickeln“, sagt Prof. Dr. Roderich Süssmuth. Die Wissenschatler*innen sind überzeugt: Da sie jetzt ein strukturelles Verständnis haben, können sie die Anzahl der Bindungsstellen zwischen Albicidin und der Gyrase erhöhen und weitere Modifikationen an dem Molekül vornehmen, um seine Wirksamkeit und die pharmakologischen Eigenschaften zu verbessern. Mit Hilfe von Visualisierungen am Computer hat das Team bereits Variationen des Antibiotikums mit verbesserten Eigenschaften chemisch synthetisiert. In Tests erwiesen sich diese Varianten als wirksam gegen einige der gefährlichsten bakteriellen Infektionen im Krankenhaus, darunter Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa und Salmonella typhimurium. Dabei war Albicidin bereits in kleinen Konzentrationen hoch wirksam.

Aufklärung des Wirkungsmechanismus mit Kryo-Elektronenmikroskopie

„Trotz seines bekannten antibiotischen Potenzials und seiner geringen Toxizität in vorklinischen Experimenten ist es notwendig, die Struktur und Zusammensetzung des doch recht großen Albicidin-Moleküls für seine Verwendung als Arzneimittel zu optimieren“, erklärt Roderich Süssmuth. „In der Chemie sprechen wir hierbei von einem ‚rationalen Design‘ des Moleküls. Das wurde aber bisher behindert durch die Tatsache, dass wir nicht genau wussten, wie Albicidin mit der Gyrase interagiert.“

Deshalb hat sich die Forschergruppe an der TU Berlin mit Laborteams  am John Innes Centre in Norwich (Großbritannien) und an der Jagiellonen-Universität Krakau (Polen) zusammengetan. Mit ihrer Hilfe konnte Albicidin quasi bei seiner Arbeit beobachtet werden. Zum Einsatz kam dabei die sogenannte Kryo-Elektronenmikroskopie. Dabei werden bei tiefen Temperaturen von unter minus 150 Grad Celsius Elektronenstrahlen verwendet, um die Vorgänge auf molekularer Ebene ohne Verwacklung in tausenden von Schnappschüssen festzuhalten. Das Ergebnis: Albicidin bildet eine Art L-Form und kann so auf einzigartige Weise sowohl mit der Gyrase als auch mit der DNA interagieren. In diesem Zustand kann sich die Gyrase nicht mehr bewegen, um die DNA-Enden zusammenzubringen. Die Wirkung von Albicidin ähnelt hier einem Schraubenschlüssel, der zwischen zwei laufende Zahnräder geworfen wird und diese blockiert.

Der nächste Schritt für diese Forschung sei die Zusammenarbeit mit weiteren akademischen und industriellen Partner*innen, um die Forschung zu klinischen Studien am Menschen voranzubringen, so die Forschenden. Wären diese erfolgreich, würde Albicidin eine ganz neue Klasse von Antibiotika begründen.

Originalpublikation

Michalczyk E, Hommernick K, Behroz I et al. Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin. Nat Catal 6, 52–67 (2023). https://doi.org/10.1038/s41929-022-00904-1